Identification of genes associated with ovarian cancer metastasis using microarray expression analysis.

نویسندگان

  • J M Lancaster
  • H K Dressman
  • J P Clarke
  • R A Sayer
  • M A Martino
  • J M Cragun
  • A H Henriott
  • J Gray
  • R Sutphen
  • A Elahi
  • R S Whitaker
  • M West
  • J R Marks
  • J R Nevins
  • A Berchuck
چکیده

Although the transition from early- to advanced-stage ovarian cancer is a critical determinant of survival, little is known about the molecular underpinnings of ovarian metastasis. We hypothesize that microarray analysis of global gene expression patterns in primary ovarian cancer and metastatic omental implants can identify genes that underlie the metastatic process in epithelial ovarian cancer. We utilized Affymetrix U95Av2 microarrays to characterize the molecular alterations that underlie omental metastasis from 47 epithelial ovarian cancer samples collected from multiple sites in 20 patients undergoing primary surgical cytoreduction for advanced-stage (IIIC/IV) serous ovarian cancer. Fifty-six genes demonstrated differential expression between ovarian and omental samples (P < 0.01), and twenty of these 56 differentially expressed genes have previously been implicated in metastasis, cell motility, or cytoskeletal function. Ten of the 56 genes are involved in p53 gene pathways. A Bayesian statistical tree analysis was used to identify a 27-gene expression pattern that could accurately predict the site of tumor (ovary versus omentum). This predictive model was evaluated using an external data set. Nine of the 27 predictive genes have previously been shown to be involved in oncogenesis and/or metastasis, and 10/27 genes have been implicated in p53 pathways. Microarray findings were validated by real-time quantitative PCR. We conclude that gene expression patterns that distinguish omental metastasis from primary epithelial ovarian cancer can be identified and that many of the genes have functions that are biologically consistent with a role in oncogenesis, metastasis, and p53 gene networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Diagnosis of Breast Cancer Subtypes using the Selection of Effective Genes from Microarray Data

Introduction: Early diagnosis of breast cancer and the identification of effective genes are important issues in the treatment and survival of the patients. Gene expression data obtained using DNA microarray in combination with machine learning algorithms can provide new and intelligent methods for diagnosis of breast cancer. Methods: Data on the expression of 9216 genes from 84 patients across...

متن کامل

IN SILICO INVESTIGATION OF THE EFFECT OF LYCOPENE ON THE EXPRESSION OF BRCA1 AND BRCA2 INHIBITOR GENES IN PROSTATE CANCER

Background & Aims: Cancer is a genetic disease that results from mutations in genes that control cell activities. Prostate cancer is one of the most common types of cancers in men. Surgery, radiation therapy, hormone therapy, and chemotherapy are used to treat this disease. These treatments have numerous side effects after treatment, including impotence along with the high cost of treatment. In...

متن کامل

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

The miR526b-5p-Related Single Nucleotide Polymorphisms, rs72618599, Located in 3\'-UTR of TCF3 Gene, is Associated with the Risk of Breast and Gastric Cancers

Introduction: Single nucleotide polymorphisms result in dysregulation of the proto-oncogene TCF3 gene, which is associated with the development, metastasis, and chemoresistance of different malignancies. Methods: GSE10810 microarray dataset and GEPIA2 online software were used to find differentially expressed genes and the TCF3 status in breast cancer (BC) and gastric cancer (GC), respectively....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of gynecological cancer : official journal of the International Gynecological Cancer Society

دوره 16 5  شماره 

صفحات  -

تاریخ انتشار 2006